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SUMMARY: The N-terminal amino acid sequence of an endo-j&1,4glucanase from the cellulase complex 
of the white-rot fungus Schizophyllum commune has been determined. The sequence from Glu-33 to Tyr-5 1 
was homologous with the active site sequences of various hen egg-white type lysozymes, including lysozyme 
catalytic residues (Glu-35, Asp-52) and substrate binding residue Asn-44. The homology offers evidence for 
a lysozyme-type mechanism in enzymic hydrolysis of cellulose. 

The catalytic mechanism of hen egg-white lysozyme (HEWL), first proposed in 1967 on the basis 

of crystallographic studies (l), and by analogy with acid catalyzed hydrolysis of glycosides (2), involves general 

acid catalysis by Glu-35 and carboxonium ion stabilization by Asp-52. The essential features of the mechanism 

have since been confirmed, although the contribution of a third effect, namely ring distortion in the substrate 

during binding, is still a subject of debate (3). Other lysozymes, from bacteriophage T 4 (4), goose (5), and 

the mold Chalaropsis (6), show no sequence homology with each other or with the originally studied HEWL. 

However, subsequent structural studies (7, 8) have proven that phage, goose, and hen lysozyme classes are 

related and, indeed, that glutamic and aspartic acid residues are common active-site functionalities. 

As early as 1963 it was suggested that all glycosidases may follow the same mechanistic pathway 

as HEWL (9). Cellulose, which like substrates of lysozyme is a p-1,4 linked polymer, is hydrolyzed to glucose 

by a combination of endoglucanase (EC 3.2.1.4), cellobiohydrolase (EC 3.2.1.91) and fi-glucosidase (EC 3.2.1.21) 

(1 O- 12), but not by lysozyme (13). The available evidence to support a lysozyme-type mechanism in cehlases 

is very limited (for a review see 14, 15). Kinetic data has implicated a carboxylate anion (pKa 4.0-4.5) and 

a protonated carboxyl group (pKa 5 .O- 5.5) as the catalytic residues in a cellulase from Aspergillus niger (16, 

17). Affinity labels were bound to aspartic acid in @-glucosidases from Aspergillus wentii (18) and bitter almonds 

(19). However, the adjacent sequences showed no identities to HEWL. The only other sequence data publish- 

ed for cellulases is the first 20 residues of two cellobiohydrolases (20) and an endoglucanase (21) of Z’richoder- 

ma reesei. One of the cellobiohydrolases and the endoglucanase show some homology with each other (21) 

but again none of the three partial sequences has obvious homology with HEWL. 
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We have isolated and characterized an endoglucanase from the Basidiomycete Schizophyllum com- 

mune, and determined the N-terminal amino acid sequence of the enzyme (22). An interesting homology bet- 

ween the endoglucanase and the active site region of HEWL will now be described. 

MATERIALS AND METHODS 

Strain. S. commune (ATCC 38548) was used for enzyme production as previously described (23). 

Enzyme purification. The enzyme was purified to electrophoretic homogeneity from culture filtrate by a com- 
bination of fractional ethanol precipitation and ion-exchange chromatography (22). 

Determination ofthe amino acid sequence. Automated Edman degradation of 14C-carboxymethylated enzymes 
was performed with a Beckman model 890D protein sequencer (22). 

RESULTS AND DISCUSSION 

Purified endoglucanase, one of two major endoglucanases produced by S. commune when grown on 

cellulose, gave a specific activity of approx. 16 pmol bonds broken min-’ when assayed on carboxy- 

methylcellulose by the procedure of Hulme (24). The enzyme displayed a typical endoglucanase-type pattern 

of hydrolysis when tested on cellodextrins; the hydrolysis rate increased with increasing DP and a variety of 

lower DP products were formed (22). 

The amino acid sequence of residues 33 to 51 is shown in Figure 1 (upper sequence). Further details 

of the enzyme isolation, specificity and amino acid sequence are described elsewhere (22). When compared 

with the active site sequences of HEWL-type lysozymes (Fig. l), sequence identity around Glu-33 and Asp-50 

(endoglucanase numbering) is observed. Also of interest is the conservation of Asn-44; this residue in HEWL 

is implicated in substrate binding (1). 

Endo-B-1,4-glucanase from Schizophyllum commune 

33 42 45 
Glu-Ser-Cys-Ala-Glu-Phe-Gly-Asn-Gln-Asn----- 

50 
Ile-Pro-Gly-Val-L&-Asn-Thr-Asp-Tyr- 

Lysozyme from baboon milk (25) 

35 44 48 53 
Glu-Ser-Asp-Tyr-Asn-Thr-Gln-Ala-Thr-Asn-Tyr-Asn-Pro-Gly-Asp-Gln-Ser-Thr-Asp-Tyr- 

Lysozyme from human milk (26) 

35 + 44 48 + 53 
Glu-Ser-Gly-Tyr-Asn-Thr-Arg-Ala-Thr-Asn-Tyr-Asn,Ala-~-Asp-Arg-Ser-Thr-Asp-Tyr- 

Lysozyme from hen egg (27) 

35 44 + 49 52 
Glu-Ser-Asn-Phe-Asn-Thr-Gln-Ala-Thr-Asn-Arg-Asn-Thr-----Asp-Gly-Ser-Thr-Asp~.Tyr- - 

Lysozyme from duck egg (28) 

35 44 + 49 52 
Glu-Ser-Ser-Phe-Asn-Thr-Gln-Ala-Thr-Asn-Arg-Asn-Thr-----Asp-Gly-Ser-Thr-Asp-Tyr- 

Figure I. Sequencealignment of endoglucanase and fourhenegg-white typelysozymes. Identitiesare underlined 
and proposed deletions are shown by dashed lines. 
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Figure 2. Proposed mechanism for endoglucanase catalyzed hydrolysis of cellulose. 

The conserved sequences around Glu-33 and Asp50 are strong evidence for the participation of these 

residues in catalysis of hydrolysis of cellulose, or cellodextrin chains, as shown in Fig. 2. By analogy with 

HEWL, Glu-33 of the endoglucanase performs general acid catalysis of cellulose hydrolysis and Asp-50 stabilizes 

the incipient carboxonium ion. The pH 5 optimum for activity of the endoglucanase (22) is consistent with 

this mechanism. Binding of the substrate chain could involve Asn-42, although in lysozyme the corresponding 

Asn-44 binds to an N-acetyl side chain of the substrate (1). 

The sequence homology of the endoglucanase with HEWL-type lysozymes shown in Fig. 1 is remarkable 

since it implies a closer ancestral link between these enzymes of different specificity, than between HEWL 

and other types of lysozyme (goose and T4 phage (8)). In this respect the case of endoglucanase is analogous 

to that of lactalbumin (29). 

The generality of a HEWL-type mechanism in the p-1,4 glycoside hydrolases remains to be establish- 

ed. As mentioned, no other sequence identity of this class of enzymes with lysozyme has been found. However, 

Legler (30) has previously commented on the similarity of the sequence around the active sites of fi-glucosidase 

from A. we& (Ser-AsgTrp) and HEWL (Thr-Asp-Tyr). The published partial sequences of other P-1,4 glycoside 

hydrolases - a xylanase from S. commune (3 1) and the three enzymes from T. reesei (21) - have unfortunate- 

ly been quite short, representing less than 10% of the proteins, and the active sites may therefore be found 

in the remaining sequences. 
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